

Yukon Electrical Energy and Capacity Need

January 29, 2015

BACKGROUND & MANDATE

Technical Methodology

Hydroelectric Power Planning Directive

Need

Economic Growth & Demand Forecast

Impacts

Options & Hydro & Transmission **Options w/ Impacts** 7 Technical Papers

Satisfy Need

Viability Options Study

Next Steps

Business Case

1-3+ Potential Projects

INVESTMENT DECISION

First Nations Stakeholder &

Technical Papers

Mandate

Forecast Yukon's electricity need 20 to 50 years from today:

- Quantity of electrical energy gap by month for the years 2035 through 2065
- Quantity of annual capacity gap for the years 2035 through 2065
- On-Grid only

Understanding Energy & Capacity

- Capacity = Instantaneous need. It is measured in Watts (W)
- Energy = Amount of electricity used over a period of time. It is measured in Watt Hours (Wh)

Forecasting

Forecasting Planning Decision Making

- The future is unknowable.
- Forecasting facilitates planning
 - ➤ Options?
- Planning facilitates analysis
 - Costs & Benefits?
- Analysis facilitates decision-making

Given what we know today, what is the most reasonable course of action?

Forecasting

What is known with high certainty:			What is <u>not</u> known with high certainty:				
•	Past	•	Future				
•	Yukon's population will grow		How quickly and by how much Yukon's population will grow?				
•	Yukoners will continue to use electricity		 How Yukoner's electricity demand – per person – will change: For example, will it increase due to more electrical heating in the homes, OR will it decrease due to energy efficiency 				
•	Mining will play a role in Yukon's economy		Timing, size, and number of future Yukon mines				

ENERGY

Energy Gap Forecasting

Energy Forecasting Methodology

Population Forecast Results

Industrial Energy Forecast

Total Electrical Energy Forecast

Annual Energy Supply & Demand

Annual Energy Gap

Load Gap Scenario	2035	2040	2045	2050	2055	2060	2065
Low Scenario (MWh)	54,000	69,000	85,000	101,000	118,000	136,000	154,000
Baseline Scenario (MWh)	103,000	130,000	157,000	184,000	211,000	238,000	265,000
High Scenario (MWh)	180,000	242,000	311,000	389,000	476,000	573,000	682,000

Baseline Case Monthly Energy Shape

Baseline Case Monthly Energy Gap

CAPACITY

Understanding Energy & Capacity

- Capacity = Instantaneous need. It is measured in Watts (W)
- Energy = Amount of electricity used over a period of time. It is measured in Watt Hours (Wh)

Capacity Forecasting Methodology

 Capacity Forecast Growth rate: assumed to be same as the forecast demand for electrical energy

Installed Vs Reliable Winter Capacity MIDGARD

Installed Capacity	Reliable Winter Capacity
 Rated Capacity / maximum achievable For diesel generators, installed capacity equals reliable winter capacity 	 Based on the availability of fuel Amount of water (fuel) available to pass through the turbines is less during winter

Hydroelectric Facility	Installed Capacity (MW)	Reliable Winter Capacity (MW)	Reliable Capacity as % of Installed Capacity	
Whitehorse Hydro Facility	40	24	60%	
Aishihik Hydro Facility	37	37	100%	
Mayo Hydro Facility	15.5	11	71%	
Total	92.5	72	78%	

Capacity Supply & Demand Forecast

Capacity Gap

	2035	2040	2045	2050	2055	2060	2065
Low Case Capacity Gap (MW)	11	14	17	20	24	27	31
Baseline Capacity Gap (MW)	21	26	31	37	42	47	53
High Case Capacity Gap (MW)	36	48	62	77	95	114	136

Conclusion

	2035	2045	2055	2065
Law Casa Saanania	11 MW	17 MW	24 MW	31 MW
Low Case Scenario	54 GWh	85 GWh	118 GWh	154 GWh
Basalina Casa Sasmania	21 MW	31 MW	42 MW	53 MW
Baseline Case Scenario	103 GWh	157 GWh	211 GWh	265 GWh
Himb Casa Casmania	36 MW	62 MW	95 MW	136 MW
High Case Scenario	180 GWh	311 GWh	476 GWh	682 GWh

Takeaway
Islanded Grid: must meet monthly energy & capacity gaps

Takeaway
Winter Months : largest requirement

Takeaway
Plan: for addition generation to address these gaps

Thank you & Questions...

Peter Helland

Midgard Consulting Inc.

Email: phelland@midgard-consulting.com

Phone: 604.298.4997

Michael Walsh

Midgard Consulting Inc.

Email: mwalsh@midgard-consulting.com

Phone: 604-828-0509